code {poems}

code {poems}
is a project by Ishac Bertran

Code editors:
David Gauthier, Jamie Allen,
Joshua Noble, Marcin Ignac

First Edition: September 2012, 100 copies
Second Edition: QOctober 2012, 300 copies

Published by Ishac Bertran
Printed n Barcelona

code-poems.com

© August 2012, The Authors
This book and its content is licensed under a Creative
Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License

N

st

E
e

o
o

s
e

N
s

for (}

FOREWORD

I sit in a room

In this room are images I cannot leok at
Objects and people I cannot recognise
Codes I will never decipher

Books Iwill never read

I can see, I can hear

I have my own language

Poetry and computer code come out of language.
Many forms of poetry can be thought of as code;
sets of encrypted verses, to be read and reread,
interpreted, “compiled” in the mind. The poet has
always had liberty to play in this way because we
are (at least) twice born: once into this world, and
once into language. We know languages intimately,
and are each virtuosic in our own ways, at the sum-
moning and conjuring that they allow. code {poems},
as a bock, is an experiment in the potential of this
same intimacy, but in the realm of computer soft-
ware languages. It is an investigation of the explo-
sion of artistic forms and imaginative worlds that
result from our close communion with simple sym-

hols and their arrangement on the printed page.

]

Computer programmers, “coders,” can manipulate
the material of code in the same way a poet makes
present the material of language, albeit with a more
esoteric, mathematical and restricted set of linguis-
tic tools. The coder’s hieroglyphics often include
English-language phrasings, but these words take
on skewed and concentrated meanings. In com-
puter code, constructions like the “for-loop” and the
“if-then-else,” are similar to their English-language
connotations, but they adopt new efficacies, new
import, new powers to control the finally physical
systems of hardware. And so, the facility that con-
temnporary writers-of-code have with their symbolic
systems is a different one, but no less virtuosic, and
for some no less intuitive (if not more). There are
those that dream in FORTRAN, and somewhere at
this very moment, an impassioned conversation is
taking place in Python. Long-term commitment and
time spent creating software changes a person’s
thought patterns. A lifetime spent authoring sofi-
ware can change the way a mind interacts with the
world. As with any expressive form, software lan-
guages change the way people think, and this has
had mass-effects on culture as a whole. Despite
substantial formal constraints, and intrinsic stand-
ardisation, the programming style of an author in
a given language is ever present in their code. As
with more “human languages,” (English, German,
French, etc.) machinic languages are never merely
indicative or functional, but a written condensation
of the mood, the personality, and the world-view
of its author. A deeply hierarchical software de-
sign could indicate a cultural and political context
in which a given software-hardware architecture
evolves. There are seasoned,readers who can dif-
ferentiate the austere code of an Eastern European

collaborator from the verbose, accessible style of the
Silicon Valley coder. Even within the strict rules and
regulations of software, style, manner and method
are distinctive, varied and personal.

The sympathies that coders extend to their more or-
ganic readership (people} are obvious, as they are
usually more like what we all read daily. The use
of the human-readable “comment” facility of com-
puter languages is something of a sign of generosity
toward future readers or users of that code. With
all computer code though, there might be an inten-
tion toward a secondary audience of human readers,
but there is always deference toward the primary
electronic audience. The author’s generosity, or lack
thereof, toward human audiences most frequently
extends in the other direction — toward the com-
puter itself. Does the writer deal elegantly with RAM
memeory use, or allow the program to leave messy
traces of itself all over the motherboard? Does the
author stick to conventions of interfaces and inter-
action that the computer’s operating system will
“like”? And so, with a line in a text file, the author of a
valuable snippet of code speaks directly to function,
material action and agency {in the computer, rout-
ing electrons to-and-fro). But here, removed from
prying gaze of the linker, compiler and CPU — writ-
ten into a physical book like the one you now hold
in your hands — code enters culture, history and
imagination. It speaks uncharacteristically, and di-
rectly, to people: human readers, and our worlds.

An apocryphal story most of us have come to be-
lieve reports that the Inuit have a larger number of
words for “snow” than do Anglo-American English
language cultures. As a result, by accounts, these
indigenous peoples’ are able to understand and
experience snow in a fantastically expansive way.

Wil

However contrived, the story supports our moest hu-
man intuition that languages frame and effect the
realities people are able to experience. The languag-
es we use, and how we use them, seem to us a direct
reflection of the richness of our lives. But language
puts us both in relation to, and at distance from
this life, our worlds. We describe, we create and de-
stroy meaning, we sympathise, we embellish and
beautify, we love. All the while we strain and bloat
our expression in seemingly vain attempts to shape,
transmit, and pay witness through words. Always
trying to hit upon a perfect formulation, grappling
toward descriptions of thought and feeling, as if
scaling an impossibly high mountain of language
(even as I type these words onto a keyboard). In this
swing, between the nearly unthinkable limitless-
ness of language and our often frustrated expres-
sions, lies a precarious power — used in poetry to
surprise, delight and challenge. If our house of lan-
guage is also a prison, poetry is an escape tunnel.
The code {poems? in this book operate in this same
way, but with constraints that are much more strict
and {in contemporary computing culture} with ca-
pacities to actuate language that are in many sens-
es even greater,

The idea of a code fpoem} could be interpreted many
ways. Most literally, we might imagine a computer
writing code for us, using its mastery of rule-based
permutation and iteraticn to generate a selection of
words: infinite prose, or “a new poem every time.”
History has witnessed a slew of collaborations be-
tween literature and computing that operate along
these lines (from computer-generated haikus to
nonlinear hypertext-novels). Likewise, code {poem}
might allude to a poem in which an encrypted mes-
sage is embedded, as in the “poem codes” used as
keys to decipher messages during the Second World

viii

War (as a most famous example, Leo Marks’ “The
Life That I Have”). The approach taken in the col-
lected poems included in this book, instead, is
to present works that extract from the form and
subject matter of computer languages themselves,
something of their expressive power.

code {poems] presents a set of solicited works that
brilHantly reveal the inner and outer workings, cre-
ative potential, and individual styles of both a par-
ticular computer program and its author. They are
written by software engineers, artists and other cod-
ers, asked to “explore the potential of code to com-
municate at the level of poetry.” (collected online
at code-poems.com) The project allowed for online,
public submissions from code-writers in response
te the notion of a poem, written in a software lan-
guage, that is semantically valid (i.e.: it would or
could compile to be run on a computer}. With these
minimal rules, the project presents a cross-com-
pilation of these poetic attempts themselves, each
author free to interpret the idea of what code {po-
etry} might be. This collection of solicited works bril-
liantly reveals the inner workings, constitutive ele-
ments, and styles of both a particular software and
its authors. There are poems here that specifically
address classical themes like love and romance.
There are others that reveal a tendency towards the
kind of absolute and original control (god-complex?)
that sometimes comes of hours spent building en-
tire universes inside a machine, Still others seem to
talk back to the code itself, challenging its expres-
sivity and potential as poetry. A select few others
allow world events and topical themes to emerge.

In everyday writing and speech, language itself is

barely noticeable. What it is you are actually read-
ing here and now are simple marks on a page,

ix

disappearing right before your eyes as you read.
Through its own supremacy and ubiquity, language
is elusive, difficult to perceive. The words we pass
our eyes over are like stealthy little cryptograms
— fieeting secret messages, talking back at us in
codes. It is here that poetry intervenes. Poetry is
language speaking for itself, and this iz no differ-
ent with computer code. Those of us used to read-
ing through code snippets and ‘¢’ files barely no-
tice its structure, how the syntax cperates, or the
oftentimes complex beauty or simple satisfaction
encapsulated by each 3 or 4. One promise of code
{poems} is to develop new perspectives on the com-
puter languages they feature, showing us the Iyrical
beauty of these structured protocols. A code {poem)}
produces for us, anew, the materiality of computer
programming languages, as instructions to the ma-
chine and right there on the page.

When things get truly complex, as they may indeed
be getting, the distinction between us, our tools,
and the things that can be made with them begins
to dissolve; the information-scapes we navigate dai-
ly are filled with media that are intertwined with an
abundance of messages and identities. The signified
works backward to erase the signifier; words-them-
selves vanish the moment they are pushed from the
page or the tongue. Through code {poems}, we are
compelled toward a re-appearance of language that
illuminates how meaning is created, for us and for
our machines. But only we can truly read these hu-
man encodings, these poems in code.

Jamie Allen

ABOUT THE PROJECT

Poetry is a form of literary art in which language is .
used for its aesthetic and evocative qualities. It al-
lows for a multiplicity of interpretations and there-
fore resonates differently with each reader.

Computer code is a set of languages used to com-
municate with and between computers. It has its
own rules (syntax) and meanings (semantics). Like
literature writers or poets, coders also have their
own style that includes sfrategies for optimizing the
code as read by a computer, and facilitating its un-
derstanding through visual organization and com-
ments for other coders.

Code can spezk literature, logic, maths. It contains
different layers of abstraction and it links them to
the physical world of processors and memory chips.
All these resources can contribute to expanding the
boundaries of contemporary poeiry; using code as
a properly new language. Code can speak about life
and death, love and hate. Code that is meant to be
read, not run.

xi

In order to explore the potential of code to commu-
nicate at the level of poetry, a call for submissions
was open between the February 22nd and May 31st
of 2012. The rules for submitting code poems were
simple: (1) the poem having a maximum size of 0.5
KB, and (2) it required to compile. ,

A total of 190 poems were submitted from 30 dif-
ferent countries. The code editors that collaborated
on the project made the selection to be printed in
this book, attempting to represent the variety and
creativity of the submissions, as well as different
approaches to code poetry.

The poems in this book do not necessarily need to
be read in any particular order. That said, the linear
flow of the book has been sorted with an intention to
provide a balanced and enjoyable flow to the reader.

T T T T ——— e T ——— ————— ——— ———— e e

ACKNOWLEDGEMENTS

Thanks to all the code poets that contributed to this
project:

Aaron Broder, Alejandro Corredor, Alvaro Matias
Wong Diaz, Andrew Couch, Andrew Parker, Antonio
Moujadami, Atanas Bozdarov, Attila Palfalusi, Ay-
meric Mansoux, Bacchus Beale, Ben Englisch, Brad
Sorensen, Bram De Buyser, Bruno Herbelin, Carrie
Padian, Chris Adams, Chris Boucher, Cosima Dipal-
ma, Dan Brown, Dane Hillard, Daniel Bezerra, Dave
McKellar, Dave Mezee, David Berry, David Cantil-
lon, David Devanny, David Homes, David Sjun-
nesson, Dean M Kukol, Dom Slatford, Ed Schenk,
Elena Machkasova, Erik Knechtel, Giulio Presazzi,
Gorenje Smack, Guilherme Kerr, Iris Dunkle, Irtaza
Barlas, Izzy Edwards, Jake Forsberg, James Grant,
Jason Kopylec, Jason Rowland, Jasper Speicher,
Jeffrey Knight, Jennifer Mace, Jerome Saint-Clair,
Jesse Pascoe, Joagquim d’Souza, John Dale, John
McGuiness, John Saylor, Jolene Dunne, Jon Bounds,
Jon Coe, Jonny Plackett, Jose Portelo, Josh Fong-
heiser, Joshua Reisenauer, Jot Kali, Ken Hubbell,
Kenny Brown, Lans Nelson, Lutalo Joseph, Magda

Arques, Marc van der Holst, Marco Triverio, Marcus
Ross, Mario Sangiorgio, Mark Whybird, Mary Alex-
andra Agner, Matias Chomicki, Matt Painter, Mat-
thew Painter, Matthew Perkins, Matthew Ward, Mi-
chael Cheung, Michael Fall, Mikey Hogarth, Nancy
Mauro-Flude, Nataliya Petkova, Nemesis Fixx, Nich-
olas Starke, Nick Daly, Pall Thayer, Paul NMingworth,
Peter Schonefeld, Petroula Sepeta, Rafael Romero,
Ramsey Nasser, Rena Mosteirin, Ricardo Sismeiro,
Richard Fletcher, Richard Littauer, Roger Donat,
Ruggero Castagnola, Ryan Christiansen, Ryan Ka-
bir, Shani Naeema, Shawn Lawson, Signe Breum,
Soon Van, Suhail Thakur, Sylke Boyd, Terek Ert-
rean, Thibault Autheman, Thomas Braun, Thomas
Pellegrini, Tobby Cheruthuruthil, Ubaldo Pescatore,
V Nels, Vilson Vieira, Viviana Alvarez Chomén, Wil-
liam Dupré, William Linville, Wolf Herrera, Xtine
Burrough, Yann van der Cruyssen and Yves Daoust.

Thanks to Jamie Allen, Joshua Noble, David Gauth-
ier and Marcin Ignac for their enthusiasm and dedi-
cation to the project.

And thanks to Elena Gianni, John Lynch, Marco

Triverio, Hari Harikrishnan and Harsha Vardhan
for great conversations about code poetry.

Ishac Bertran

EDITION NOTE

The code {poems} in this bock are setin Inconsola‘ga, .
a monospace typeface designed by Raph Levien in
2005, inspired by humanist sans fonts. The rest of
the text is set in Bookman Old Face, a serif typeface
designed by Alexander Phemister in 1258.

The book is printed by Impremta Badia, founded in
1888 in Barcelona, in black onto 100gsm Soporset

paper.

ARS POETICA

String silence="
String idea="This is’nt pletry.”;
String draft;
String[ipoem=new Stringlidea.length({)];
void setup(){
draft=idea;
Write();
ReThink();
}
void draw(){
ReWrite();
}
void Write(){
println (draft);
b
void ReThink(){
for{int decomp=@; decomp<draft.length() ;decomg++)
{poem[decomp]=draft.substring(decomp,decomp+1);}
1
void ReWrite(){

byte seek=byte(random{@, poem.length));
poem[seek]=" “;

Stiring poetry=join(poem,””);
println{poetry);
if(peetry.equals(silence)){
printIn(“.”); noLoop{);}

Alejandro Corredor

/7 Processing

.
5
.
e
o

.
\}‘gﬁ\é
}Ez‘%;}

%§3

S
¢

e Hhy
S
&
S

e

o

e
Vo

UNHANDLED LOVE : BODY

class love {3}; : <html>
& <body>
void main()) <!-Something->this<!-life-><l~has-><!-taught-><I-
{ & me->

throw love(); 2 <l-->is <!-that->the<!-perfect-><!-body-><I1-is-
s i ><!-a myth->

<l-and-><l-there’s no-> secret<!-shortcut-><!-to-
>:<!-happiness->

<!-and->nobedy<! -is-><!-always-><!-right-»>

<l-we-><l-all-><l-have-><!-moments—><! -of~><! -
brilliance->
<!-and->fits<l-of-»><!-R-><!-A-><!-G->< ! ~E~><hr>
<I-and-><i-live-><!-our lives-><!-beautifully->

<!l-in-><!-the-><!-world’ s~»<!-imperfect-><!- .
plane->
</body>
</html>
Daniel Bezerra : Carrie Padian
’ /7 Cr+ | // HTML
14 15

RACING NUMBERS : DISFUNCTION])

#1/bin/bash : function disfunction(){

0L ses/Letdlrs]/23) o if {weCannotStart&8weWillNotStop){

——.{) { echo -ne %@ ° 0} = if (iCannotRun&8uCannotWalk){

one() { __. ‘1’ && _.. %@ 0} = if{therelsNoWay&&thereIsNoOne){

and() { __. ‘& && _.. %@ v} : if{uHoldYourFlag&&iHoldMyGun){

two) { _.. ‘27 && _.. 3@ i} i while(timePassesBy&&hopePassesOut){

. (3 { echo -ne $&\\n T f while(someRemainSilent&&someOnlyShout){

DO (oL ${e//Tow]?[*s]/13;} e while(someWaitForJesus&&someWaitForFood){

while(uChangeYouClothes&&iChangeMyMood){
try{settlingbown| |cpeninglp;
f/try
listeninglIni|'actingOut;
/7try
[anything,scmething,whatever,whoCares];}
//all that’'s left when you
catch(me){isAskingWhosThere; 31331133313}

e

R A
-

ey

S

T

i

S

.
-

o
o

-
e

o

e

-
-

o

Gerrit Riessen B Brad Sorensen
// Shell o /7 Javascript

N

- . . ; . o Ca e e

4
g 7
g0
O -
.
£
3
=

*
L
B [
M ()
>
5 2
N
.I,,.. @ [o
B i pel
A = ¥
£ [
m E] ©
e £
@ [§]
O
@ - o
.- 4] 2 =
O — ot a0 L ‘-
5] e L © — i .
@ E=IEES o E Q ~ ~
@ - [Q (<] [Te]
—r " — —~ [T = + = = St e
eG4 e ~ = & o “ [¥]
| 0 o ~ O O o~ v %] c o
O WU x > £ .= L ~’ = 7] ~ £ . (.
— e U e G — O s] c O o [=3 o] > 3
o - G = = — = -~] + + Loa
I > o 5] .- 5] © = < @ —~ W
Z 07T [B = B] - v w1 £ Wy by [[« B
£ 9] £ 5] Js]
3 © E p] + =
o .- —t .- 5]] s = [¥]
@ -~ (8]) 0w 3] = [@ =

B i s s e s L

.
§ §
38
[a]
=
£ g
]
d/.
[N
g
iy
%3
3
a9
v -
o uy
©) g _
o Z
—
E~ o0
e 4 ~
S >
o
& % -
= -)
=~ — [
=3 -0
< — v
=]
0 c
Q -
2 — o
o a
frn =i [l
[=] -
9] =] z N
7] o]
)
] 44 o
ol L =
o o O
— [al (oY
= o
e o o

namespace msp.She.Sharply
{
public class §
{
S mylJoy;
S withMyChildren;
S everSoSweetly; N
S asTheHeroine;
S smilingWithArms;
$ laughingAtMyJokes;
S sleepilyStretching;
S dancingInTheKitchen;

public $ asISing(S you)
{

myJoy = you;
withMyChildren =
everSoSweetly =

asTheHeroine =
smilingWithArms =
laughingAtMyJokes =
sleepilyStretching =
dancingInTheKitchen =

return everSoSweetly;

FLUENT.SHE.SHARPLY

myJoy;

Matthew Perkins
/S CH

UNTITLED (LOVE})

fleat intime;
//intimate the presence of the flesh
int erlace;
//for the
void /*xof mountains*/

/xwilderness*/
setup(/#silence in thex/){background(@/xfx/);//a
shivering lake
/*when it*/

stroke/*s your skinx/(255 /*pulsing

beats®/);}
// in this

void /*thatx/draw/*s the frequency of a
kiss=/(O{ .

//for there is no accurate measure

/#when the tremblingx/line

(/*int*/erlace/*s with myx/,50/#ar heart*/,10@/
*sekx/ 5@/*akx/);

}

Nataliya Petkova

// Processing

: i Lot
o e
.

.

CoEE

-
-

e
i

o
e

-

.
ey

an

N

-
-

an
G

o

e
o

e

i

e
s
e

-
-

o
-

i

N

D

S

e

0

-
o
-

Vo

i

e

EUCLID IN DISGUISE

1701998444

int comma{int hygchen, int greater)

#include <stdio.h>

if (greater > hyphen)

1781998444,

unsigned int n

return commaf{greater - hyphen, hyphen);

else if (hyphen > greater)

b
1

return ccmmaChyphen - greater, greater);

}

else

- i - }?.% - - 2 e ,,
. - , ...
. .- - -
fd&s%s@;\%},}}{;?\,\ o o T
e ro

o

Yves Daoust

23

return greater, hyphen;

int main{)

:@,

int i

while(i < n) {

putc(((n >> (1 % 4) % 8) & @xff) +

4% ((inty (1 %8 % 7) / &),

stdout);

ae

Marco Triverio

22

it++;
return n;

FOLLOW ME TO THE DEN OF ZEN. ..

#follow me to the den of zen...

seek="wisdom in the unknown’
seek and nil;{
‘with swe’=>’at the altar o ruby gods o
old’.split(/your curiosity/),
‘u must’=>({(1/2 and ‘conqguer’)
if seek+’ing enlightenment!’)3}

begin
to=seek
seek, far=to, seek
if ‘u seek’<< 1.abs << ‘truth’:
to << ‘ever ascend beyond’ <<
{1/8.23.infinite?
end; ‘yo faith’
end

this = 666.times
{Isin| “brings > light than darkness” }

“readin #{this} in the bible o satan, i thought”
[*1”,”should”]. join"them”
print this and seek << ‘divinity in my heart’

Nemessis Fixx
// Ruby

ISM | BREATH | WHO | SHE | WITH | I

cat rocmofenesown.txt | sed ‘s/ala-Z1/la-z3/g’ |
grep -cE “\bla-zl+ism\b” | sort | unig -¢ | sort
T despotism
1 feminism
T organism
1 scepticism
1 symbolism
13 criticism

cat roomofonesown.txt | grep -oF “\bla-z]+
hreath\h”

drew breath

her breath

his breath

hot breath

my breath

our breath

Nancy Mauro-Flude
7/ Fnix

A
S
S

f%%;w
o
e

o

S

e
-

e
e

e
S

.

e

Tam

o
-

o
-

-

-
-
WN\\VWQ/

A

s

TWOFACED BITS OF THE UNIVERSE

public class TwoFaced { i nil
public String greet() { n pop!

return “Hi! So great to see you!”; (time {3)
¥ empty?
atom
private String think() { atom atom

atom atom atom atom atom

atom atom atom atom atom atom atom atom atom
(binding [atom [atom [atom [atom [atom]]1117)
make~hierarchy

repeat

repeatedly iterate sequence

constantly interleave

merge «

return “Fucking bitch.”; -

replicate
parents
descendants
cycle
7000200000

true? false?
find identity
find name
symbol? number?
ratioral? odd?
e resolve
future?
future-done?
future-cancelled?
reversible?
nil?

Elena Machkasova
// Clojure

Jason Kopylec
/7 Java

LIFE IS RANDOM

import java.util.x;

public class Life {
private String brain;
private String fate;
public static void main(Stringll a) {
Life T = new Life();
I.1live(};
¥

public void live() {
my_destiny();
System.out.println(“I’m “+brain+” and
“+fatet+”,”);

}

public void my_destiny() {

Random r = new Random();

String [1 fates = {“Lucky”, “Unlucky”};
String [] brains = {“Smart”, “Stupid”}:

fate = fates[r.nextInt(2)];
brain = brainslr.nextInt(2)];
}

Ubaldo Pescatore
/7 Java

FOR AGNES

for you_Agnes in ‘which time";

do find /if you can/ \

\

“there is nothing, Agnes” 2> he_done:
until [[$you = #xknowxx]7;

do you="know ‘whoami‘ 77
look “ my Agnes ... “;

if [-u “only could” 7;
then id rejoice;

patch false hopes; fi;
from nothing 2> nothing;

done;
done;

less $@ |\
say -v Agnes

Jeffrey Knight
// Shell [OSX)

TWO STEPS FORWARD

SIMPLIFY

L)
E)
o
[Se)
>
oy
L.
o
K
L,
(L]
=
[}
43
[}
=
<
(&3
¥
=1y
b
T
Fe)
e
-
e
=
e
@
1=
)
oy
]

AY
= P
. N —
—
=} ~ VA
o o VA
= e~ 3
=1 — L X x
4+)
in [bo~ 1
v
» U ox X
[} —
9 2o
= c
— — = fatn
(8]
oy
-
+
Bl @
L - oo
> 0O MM
Q v .0
=] [
Po
@
[N]
L o L
(S
o
w D@
= = M >
o E L O
< ® £
oo))
- C L O
fl.+ O @
e —
> > o
) AR =NE T
e o M = e
BN [ST VS
oA ISl IR -1V [}
= S = n T E
0T ©C 00 - oo
QE Q= E 0 < w»
E -4 0 @ -~
U BDE U - - - -
vy
£ E O
© = o~ 3
— O 0w
3
=
Q
=

oo

S

Aaron Broder
e

e
A
=

o
-

L
e

31

return @;

“C:

Josh Fongheiser
// Visual Basic

30

If My.Computer.FileSystem.FileExists(

\glebdata.ini™) = True Then
Console.WriteLine(“Now that you’ve
simplified, relax.”)
End Sub

My.Computer.FileSystem.DeleteFile(“C:
End Module

\globhdata.ini™)

Three.py ~ Rising Oslo = [“hot”,
“and”,
from time import sleep “dry”]
from random import random in_May = “for roses”
Cold = [“but”,

mom = open{__file__Y.read() “temperatures”,

“run higher”]

732

while True: Still

H

child = open(str(random(}) + ‘.py’, ‘w’) Faces = [“suppress”,
child.write(mom) “grained, white, screens”,
child.close() “hardly seen”]
sleep(random{}*1@)} Absork = “Fascism”

The_judgement = [“most exact”,

“boy & girl”, .
“lie flat”]

Eyes = [“white-fimbriated”,
“blue”,
“white, lies”]
Red = “n
For_the = [“love of Ged”,
“July 22 remains”,
“Breivik’s trial of the”]

Vilson Vieira, Renato Fahbri
// Phyton

Dauvid Berry
// Ruby

i
-

THE RUMOR A JUDGMENT

#!/usr/bin/perl
if(true){

<SCRIFT>

true unless false;

7

judgment= functicon(you){

Yelse{

false unless true; qtn="How many things do you *
you.guess=prompt{qtn+’guess?’ , @)
you.know =prompt{gtn+'know?’' ,@)

induction=’fai’;deduction="suc’
arrogance="1lu’ ;humility =’ce’
crejudice=’re’ ;tolerance=’ss’

ignorance=induction+arrogance+prejudice
wisdom =deduction+humility +tolerance
prudence =you.know-you.guess

this.methed=(prudence<1)?ignorance:wisdom
}

m=new judgment{{}).method
document.write{‘This judgment tends to ‘+m)

</SCRIPT>

Pall Thayer
// Perl

Guilherme Kerr

// Javascript

.
o
o

.

. .

oy

NESTING THE GAME

boots: “slush”
feet: “slip”
focthall: [sails past fingertips]

<GOD>
<universe>
<galaxy>
<solarsystem>
<egarth>
<island>
<town> -
<garden>
<flowerbed>
<snowdreop>
<petal>
<molecule>
<proton>
<gquark:>
<GOD>
</fgquark>
</proton>
</molecule>
</petal>
</snowdrop>
</flowerbed>
</garden>
</town>
</island>
</earth>
</solarsystem>
</galaxy>
</universe>
</GOD>

while {chuckling: “fathers”] [
watch~the-world-turn-past: “counter-clockwise”

a: [ball almost caught]

Dan Brown
/7 HTML

Ryan Christiansen
// Rebol

2955

A VOLATILE SKETCHBOOK

N A Volatile Sketchbaook
\ for the vaporware artist

class ic_case {

void of_ambition() {

variable page @ cells allot
@ constant pencil
1 constant charcoal .

while(true) {

//T0D0

tdraw 1+ + dup 1 + swap 2drop
: turn 2 page +!

3

. sketch
for
page @ dup
charccal draw
pencil draw
turn

255 sketch

)

Aymeric Mansoux
// FORTH

Joaqguim d’Souza
//Jdava

o

ii

.

-i(.\§

AS3, STILL ALIVE

import flash.utils.Timer;

var steveTimer = new Timer(1000);
steveTimer.addEventListener(TimerEvent. TIMER,
stillAlive);

steveTimer.start();

function stillAlive(e)

{

trace(“Steve tried to killed me, but I've
lived * + (Math.round(new Date().getTime()/
100@) - 1317772800) + “ seconds longer.”);
¥

Jonny Plackett
// AS3

RULE 30
l
#include<iostream>
int 1,3,1,r,ol801={},t[801=(};
char c;

int main(){
std::cout<<”enter character, then return >> “;
st s einase;
o[391=1;
while(1){
for(j=e;j<8@; j++){
if(3) 1=0[j-1]1; else 1=0[791;
if(3!=79) r=o0[j+1]; else r=o[@];
if(oljD)
if(1) tljl=e; else t[jl=1;
else .
if(1*r) t[jl=1; else t[jI1=0;
std::cout<<((o[j1?” “:&c));
}
for(;--3>=0;) o[jl=t[jI1;
std::cout.flush();
usleep(50000) ;

Shawn Lawson
/7 C++

VARIATIONS ON A QUINE, IN PY MINOR TIME GOES BY SLOWLY

s="n=chr(19);c=chr(34);print’ s=’+c+s+ctn+s”

Class TimeGoeshySlowly
n=chr(10);c=chr{34) ;print’s=’+c+s+c+n+s

Function ToSave(YourLife)

For Each Day As TimeGoesbySlowly In YourLife

Dim theLights As New TimeGoesbySlowly, TaketheTime
TeSave(YourLife) ‘and

Return thelights ‘until the

Next Day

End Function

End Class

Rafael Romero
// Python

Chris Boucher
// Visual Basie

H
he
.
o

VAN[JSH

int light = int{random(@,100});
int i;
char [] shadow = new char [lightl;
//Evanescent electrons for constructed vacuum
//appear.
//A spectral presence
//unfolds.

void setup()
{
self(i);
//Execute.

void self{int 1)

{
//The random data flow
//draws step by step
//a carbon copy
//of the vector shadow
shadow[il= ‘@’;
print{shadowli1);

if{i<light-1)

{

self(i+1);

//The transpart of unmovable parts has begun.

}

Thibault Autheman

// Processing

CESARE FAVESE’S STUBBORNESS

String whatHappens;
BufferedReader today;
PImage littleSweetFruits;

void setup() {
today = createReader
(“the_world_but_what_i_m_waiting_for.txt");
littleSweetFruits = loadImage
(“i_dress_them_up_with_salt.jpg™);

¥

void draw() {
try
{whatHappens = tcday.readline();
/% just things =/ 3}

catch

{I0Exception e)

{/* so 1 don't want to see */
whatHappens = null;}}

Ruggero Castagnola
// Processing

IMMEDIATE FUNCTION

AN OCEAN OF INTEGER WAVES

{(function() {
var poem = ‘I am feeling good,\n’;
poem += ‘and feel so fine - \n’;
poem += ‘I just get parsed, \n’;
poem += ‘a single time’,

public class IntWaves

{

public static void main{String[] a3
throws Throwable

{

int h=25, alert(poem);
whila(true) nO;
{

java.lc.PrintStream p = System.out;

int cnt=new java.util,Random().nextInt(h);
int i=@, j=0;

for(;i<=cnt;i++)

{

For(J=0;j<i;j++){p.print{i);}
p.println();
Thread.sleep{(h);

b
for{i=cnt;i>=0@;i--)

{

for(3=0;j<i;j++i{p.print(i);}
p.println(};
Thread.sleep(h);

3

Matthew Ward Marcus Ross

/7 Java,

/7 Javaseript

.
S
.

o

z{;zt?;f =f
i .

HTML = HELLO TODAY MEANS LATER BASICHELL
<html> 1@ mem conundrum
25 lookup 3@
<head> 3@ goto 1@

<title>Hello Today Means Later</title>
<style type="text/css”>

you{display: block;}
me{display: block;}

</style></head>
<body>

<me>Oscillate between your eyes</me>
<you>Routine of breaths</you>
<me>Folk</me>&

<you>Fuck</you>

<time>Condition of latency & exposure</time>
<you>An answer</you>

<me>Your Hands</me>

<time>Sailed to the drift</time>
<you>Telepathic Seas</you>
<me>Searching with the Waves</me>
<time>Loop forever</time>

</body>

</html>

Wolf Herrera

Viviana Alvarez
// HTML // DOS

48 | 8 40

OH MINI 8-BALL

program OhMinigBall,

var Quest:String;

P:arrayl0..2] of String={‘Yes’,'No', 'Maybe');
begin Randomize;

Writeln(‘What profound answer you ask of me?’):
Readln(Quest);

if Quest<>’’ then begin

WriteLn(‘From wonders and ‘+

‘mysteries this is given thee’);

Writeln{*The Wisdom of the Mini 8-Ball’'+

* has for you to see:’);

Writeln(P[Random(3)1);

Writeln{‘Come again to seek’+

“ only what I may give for free.);

end else Writetn(‘Only an empty answer’+

¢ from a guesticn where the words are free.’);end.

Michael Fall

// Pascal

SATURDAY, FIRST LIGHT

#include “early_morning_run.h”
int main(void) { int spanish_wine = 9;

il

int alcohel_age = 21;

]

char epaulette[54] =

if (alcohol_age < 34) {
no_fuss = streat(epavlette,

printf(“%s\n”,first_beat);
printf(“%s\n”, no_fuss);
char end_line[] = “against the concrete”;

printf(“%s\n”,end_line);
printf(“\n”); return spanish_wine;}

char first beat[] = “dawn over the lake;”;

“waves break”; char *nc_fuss; // empty as yet

“ yesterday’s bottles”);} spanish_wine++;

Jennifer Mace

rae

BUDDHISTLIFE

public class Buddhistiife {

boolean alive = true;
boelean enlightened = false;

public BuddhistLife() {
while (alive) {
fortune();
3
dispese();

3

private void fortune(} {
if (({int)(Math. random()*365)) == 108)(
alive = false;
T
if (((int)(Math.random{)*3658)) == 108){
enlightened = true;
i
1

private void dispose(} {
if (lenlightened) {
new Buddhistlife();
}
}

public static void main(Stringl] args) {
new BuddhistLife();
b

BODYCLOCK

using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
namespace BodyClock{
class Program{
static void Main(stringl] args){
BodyClock(};
Console.Readline();}
public static veid BodyClock(){
int n, Day = 1, Year = @;
bocl Life = true;
n=1;
while (Life == true){
Day += 1;
if (Day / (365 * n) == @){
Year += 1;
n-+=1;
Conscle.WritelLine(“Happy Birthday your {@}”,
Year);}
if (Year == 78){
Life = false;}}3}}}

Dom Slatford
/7 CH

Thomas Braun
/7 Java

52 53

HOW TO CHOOSE A LOVER WITH SQL

if (humans!=robots) { SELECT [Lovel.Name,
reality();
¥ IIf([BrainsJ]>[Beautyl,”Theatre”,”Booty-Call”)
AS [Type_Of Date],

IIf([Love]l.[True] Like “True”,”False”,
IIf([Heartbreaker] Like “True”,”Bad idea”,
“Sure, why not?”))

AS [Good_For_A_Flingl,

IIf([Height_In_Ft]>5.5,”Y”,”N")
AS [Tall_Enough],

IIf([Trust] Like “No”,”No way”,IIf([Love].[Truek
Like “False”,”Nah”,”Absolutely!”))
AS [Marriage_Material]

FROM ([Love] INNER JOIN Body ON [Lovel.Name =
Body . Name)
INNER JOIN Mind ON Body.Name = Mind.Name;

David Sjunnesson David Devanny
// Processing // SQL

SLEEPINGTHROUGHLIFE ‘. DAILYGRIND

#include <stdio.h> _ import java.util.Date;
fidefine LIFESPAN 81 ! i

public class DailyGrind {
int main (O { .
public static final void main{Stringl] args) {
int age = @; :
int death = @; = boolean its time_to_go_home = false;
int life = 1 B hoolean away_the_hours = true;

while (! death) { . while (away_the_hours) {
age++; H :
sleep(31556926) ; = Date now = new Date();
if (age == LIFESPAN) death = life;) its_time_to_go_home = now.getHours() > 17
: && now.getMinutes() > 39; «

if (its_time_to_gc_home) {
break;

}

try {
Thread.sleep(60200);

} catch (InterruptedException e) {
// ignore

Jot Kali : ' Paud Hiinguworth
/fC ' : // Java

- %%%é%%gﬁ

T
.

RS
o

FOREVER SHORT TRIPS

/% It fades, but it never goes away */ <=
B=2
A=V

:’U’

#include<stdio. h>

// Here 1 am
int i;

=2
={*‘_:eval,’ "7 :’parselnt(Math.random()*9) ",
‘document . write(” ‘}

// 1 need some words
#define hey do{printf(“%s\n”,
#define forever Yisleep(++i); Iwhile(1);

F=function(—,—) {
[=—["[—1++%4]

int main(){ H=_r[--[e]]
for (+=0; "< [11;++) {7 (.__+1+77)7))
hey B .
“you will miss me” ’
forever _[1=[4.,A V]

[P 1= AV, <43
_[AI=[ANV . AP]
[VI=IV AR AT

0= D)
o N G
Al ()
IVI=T (.

I=A
ll=_C11

setInterval(‘F(H, 117, 10);

the55
// Javascript

Mario Sangiorgio

rae

function you(now)

! Oh !

logical you

I already

now=now+1

if (now ==6) you=.false.
I you never

return

end

program endet
logical dream
logical night
logical you

I

character=3 me
me=’il11’

now=e
night=.true.
! I toss and turn and
do while(night)

dream = you(now)

night=dream

10h yes, please

write(*,*) dream, me

! On the sheets

write(x,*)' me with your’,night,’ire: *, now
enddo
end

Sylke Boyd
// Fortran 90

int main()

{

int i = 0;

return 1i;

OPTIMIZE ME

Daniel Bezerra
// CH+

INSERT IGNORANCE INTO IGNORANCE LOVE WILL TEAR US APART

String ignorance = “ignorance”; public class LoveWillTearUsApart {

class ignorance
{String insertInto
(String ignorance String 1){

dY{return ignorance;}} if (yl=m) {
1.split(“8”);

public static veid love(String y, String m,

void draw() { ignorance ign@rance }
; love(y, m, 1);

¥
[HEREEF R KKK A KA Sk] public static void main(String[] args) {

[FErrkwasiax/ignlrance = new ignorance ()/#sskskkksk/ LoveWillTearUsApart.love(“my_road”,
: [RFFE A KA KAk kKK ek ko [“your_road”, ”you&me™);

}

1

b
println(ign@rance.insertl nto(ignorance)

)i}

Jerome Saint-Clair
// Java

Ed Schenik
// Processing

DESPERATE PROGRAM EPISTLE

var ious = { class LookCloser
holding : [‘brie’ + ‘f', { psuedo : ‘secular’ {
b public: bool broken, purpose, ornament;
[‘med”, ‘it’, fat’, ‘ions’] public: LookCloser(
15 bool broken,
message : “not understanding\n”, bool purpose,
barely : function(al) { alert(‘when will you bool ornament)
awake?’); 3}, {
this->broken =
// unrecoverable errors (broken * purpose) &&
stop : function(ing) { (purpose || ornament);
for(var y = @; y < ious[‘holding’ J[2 this->purpose =
J.1length; y++) { Ipurpose ||
var ied = confirm(ious.message + ious[(broken && ornament);
‘holding’ JL 2 1L vy 1 3; this->ornament =
if(! ied) { setTimeout(ious.barely, 10000 (purpose * ornament) &&
D ! (broken && ornament);
B
1
¥

John Saylor Yann van der Cruyssen
// Javascript /7 C++

DANCING WITHIN

using System;

public class PoemCode
{
private bool dancing_within()
{
Boolean me = true;
while (dancing_within())
{
var iables of_light = «»;
try { int elligently_to;
object ify_the_world_apart; }
catch (Exception s)
{
int o_the_broken_parts;
throw; int o_the_seed_of _life;

}

Random ashes_of = new Random();
float ing_devices;
short age_of;
char acter_will_never_let_you = ‘b’;

3

return me;

}
¥

Alvaro Matias Wong Diaz
/7 CH

CREATION?

Creation

def dstBit(mass,rot,vel):
bMass=mass
bRot=rot
bVel=vel

def dstCld(mass,rot):
mass=mass
rot=rot

def Stir(dstBitl,dstBit2):
CldMass=dstBit1.mass+dstBit2.mass
CldRot=dstBit1.vel*dstBit2.vel
return dstCld(CldMass,CldRot)

def Sprk(dstCld):return StellarObject(dstCld.mass)
def Life(planet,seed):return None

dstBit1=dstBit(8.3,5.2,-7.1)
dstBit2=dstBit(5.3,3.2,5.4)

Cld=Stir(dstBitl1,dstBit2)

Planets=[]

for i in range(8):
Planets[i]=Stir(Cld,dstBit1)

Sol=Sprk(Cld)

Life(Planets[2])

Kenny Brown

// Python

